) c4 K! U3 c2 E0 V. ^9 `
1 F* s# a' c" D/ ^: U9 z【课程简介】
9 L7 \9 r9 t, D4 W% r0 W l2 n任何时候学习算法都不晚,而且越早越好,这么多年,你听说过技术过时,什么时候听说过算法过时,不仅没有过时,因为机器学习、大数据的要求,算法变得越来越重要了
) U5 m6 }: A$ J- u; B$ b
5 M5 }2 |6 w: l8 w! h3 Q: ?5 a【课程目录】$ V+ H6 u6 i0 s
第1章 当我们谈论算法的时候,我们在谈论什么?
+ V" q6 t2 x) B6 B- r0 ]无论是BAT,还是FLAG,但凡有点儿水平的技术公司,面试都要面算法。为什么算法这么重要?在工作中,真的会使用算法吗?学了算法到底有什么用?当我们谈论算法的时候,我们在谈论什么?: y! L: z' G5 E; Z4 @: w% D
1-1 我们究竟为什么要学习算法 试看$ o# C) b, F$ q. o! d
1-2 课程介绍
5 S F `* L6 ]
( L3 H7 ~& l0 I6 Y# i第2章 排序基础
( H' k' @' {: W# JO(n^2)的算法虽然简单,但也实用!让我们从最简单的基础排序算法开始,打开我们的算法大门!
8 c- i- F5 M# d2-1 选择排序法 - Selection Sort 试看
) D/ n) t+ Q* h0 h2-2 使用模板(泛型)编写算法 试看
+ f( u+ ^( G" b' B2-3 随机生成算法测试用例
) ?7 ^ K6 N' }- n. ~5 {0 u/ v2-4 测试算法的性能
- g6 r- S. I1 l0 v2-5 插入排序法 - Insertion Sort% g; S0 u I" r- T
2-6 插入排序法的改进3 J% |* ~: u& i5 s
2-7 更多关于O(n^2)排序算法的思考
, ], s" U2 Q z" G4 i% w( @. U/ C6 u( U1 ^! g+ n9 w% a! L4 u* G: w
第3章 高级排序算法
[6 w& X+ v! f6 y: _虽然很多同学都听说过归并排序和快速排序,但优化归并排序可以有哪些角度?快速排序能逐渐迭代四个版本?在这一章,让我们真正理解这些高级排序算法。面试遇到这些问题,再也不愁!
( z! m) ~3 M# u3 w6 e3-1 归并排序法 - Merge Sort
: l/ @5 \0 r1 x; A; O3-2 归并排序法的实现
" s" _/ Q+ w4 f7 Z1 F$ C/ m* s2 [5 N# Q3-3 归并排序法的优化
$ w% u1 b( Y; A v3-4 自底向上的归并排序算法
$ o) U1 w: l& r4 X3-5 快速排序法 - Quick Sort2 \% S1 t; \' w% E4 m- d" d/ M$ c
3-6 随机化快速排序法) J' M8 x( M( ?' @$ s5 `' y5 ~4 l
3-7 双路快速排序法6 o S5 t2 M6 g( \
3-8 三路快速排序法
. a; ]$ n, [+ h8 Y3-9 归并排序和快速排序的衍生问题
/ s! U7 H- X/ Z1 d. W: J) Y7 {' O) Q0 M% j4 x7 J% G
第4章 堆和堆排序
1 R# V: o& S3 i8 ~$ p" l深入探索我们要学习的第一个数据结构,相信听了这一章的介绍,大家都能白板编程出一个堆结构!另外,听说过索引堆吗?它可是后续优化图算法的重要工具哦。
5 f$ H. z- m+ Y3 f* [3 Y7 }( x4-1 为什么使用堆?! r" q' _: p, N Q
4-2 堆的基本存储
$ s7 L! L. l: r) c: |7 M! Z4-3 Shift Up
$ R' [2 J( {$ Y4-4 Shift Down
+ I; n( z- g o) H4-5 基础堆排序和Heapify" T9 D$ h6 d& q: h9 o2 C# ~/ r0 v* M
4-6 优化的堆排序(Heap Sort): `' L2 P7 a5 l' ]3 E, c( @; h! t
4-7 排序算法总结
9 v, c2 ]$ ~2 `6 @# f2 B4-8 索引堆(Index Heap)
# ^: |3 x0 H+ m) s A4-9 索引堆的优化
% T* E4 @2 v' R9 ?+ C4-10 和堆相关的其他问题5 T, t$ x+ P, S3 p& a- [. q5 T( g
9 o- f: {3 ^* r. ]
第5章 二分搜索树. k1 n/ m1 F k
从二分查找法到二分搜索树,充分利用递归结构,编写一个功能齐全的树结构。不要小瞧树结构,无论是更高级的数据结构,还是更复杂的算法,甚至在人工智能领域,这一章都是基础哦。
4 T9 d4 |1 h C) [3 x5-1 二分查找法(Binary Search)' K$ }" l5 ^- r* H3 }+ n n9 S
5-2 二分搜索树基础 (Binary Search Tree): X" u! k. s. O8 h3 q# J- o2 c4 }
5-3 二分搜索树的节点插入- ~9 `% [* ~8 P7 ~- @9 R# [
5-4 二分搜索树的查找
# \4 W2 s/ g4 s% _9 ]5-5 二分搜索树的遍历(深度优先遍历)
8 V3 p, i. b! x8 I0 }: ?5 E5-6 层序遍历(广度优先遍历)
% H! G3 L- ~+ i7 O5 T4 p) X5-7 删除最大值,最小值8 J$ c2 B8 ]. r B7 R3 J; g- O
5-8 二分搜索树节点的删除(Hubbard Deletion)& K- p6 j8 {& z
5-9 二分搜索树的顺序性5 Q( U: q6 w' M3 n/ [
5-10 二分搜索树的局限性
8 u7 v2 R/ H. ~" Q" R3 W3 L4 z8 o' v5-11 树形问题和更多树
0 r$ C+ D/ z; l5 |( o/ S" m
/ F! b* b0 B9 z h7 ~1 S* _& L% s第6章 并查集
m' {) A1 x" d& r, d5 ~: R一起实现一种树形结构中的异类——并查集,并逐步优化。这个数据结构,在后续的图算法中,也将发挥重大的作用哦。# m& v1 h$ r" c! x6 p" B1 Q l
6-1 并查集基础(Union Find), T2 w$ s0 g/ S$ U! d; Z2 _
6-2 Quick Find% p% m! k* V6 _$ h- |
6-3 Quick Union3 F+ T+ G% B6 P/ n% L' E# z
6-4 基于size的优化: W* v( f" [0 e% K
6-5 基于rank的优化8 U) ^1 K! Y$ _
6-6 路径压缩 (Path Compression)
8 f% l9 D5 G# f& m5 \8 `7 [) S6 h# K/ O. R
第7章 图的基础* C/ f2 D2 E9 m0 c5 o. v
图论的基础知识,就能帮助我们实现很酷的结构了!Photoshop中的魔棒功能是什么原理?怎么生成一个迷宫?自己写一个扫雷游戏的内核?通过这最小章的学习,相信你对这些问题的答案都能有一定的了解!
8 ^3 v" v* K7 N5 B' X' } C7-1 图论基础% O) x& L2 i- }* H) l& `
7-2 图的表示
0 m& S2 C, t6 Q1 K( y7-3 相邻结点迭代器$ }8 L* i6 \3 o
7-4 图的算法框架
i* ?5 p: z8 @4 B' k8 T# ?" v4 v7-5 深度优先遍历和联通分量
- }$ C/ B* X+ D, Q7-6 寻路, p- a2 M1 T7 M/ x+ D( z
7-7 广度优先遍历和最短路径
6 H% ]8 T& c( P; ^7-8 迷宫生成,PS抠图——更多无权图的应用
- D/ `9 n; y$ x/ @$ q' [! v0 A' d3 ]
第8章 最小生成树* Q; A: E* A" e- r; L/ x
接触第一个正儿八经的有权图问题,让我们看历史上的计算机学家都是怎么解决这个问题的,我们又如何利用之前学习的高级数据结构进行优化。
: i2 O' N" D$ ~" j( J* f% q8-1 有权图5 ^3 h( D' {; ]
8-2 最小生成树问题和切分定理7 z+ e/ p- I" X1 u
8-3 Prim算法的第一个实现 (Lazy Prim)' U F" B/ ^9 T
8-4 Prim算法的优化
6 P: C, m% [) }& H3 R8-5 优化后的Prim算法的实现
# a/ C' y) `, _! l" W) S7 p8-6 Krusk算法
" I, {: I6 R: f! g* H# q8-7 最小生成树算法的思考
9 L9 @/ b* d- N7 o$ m8 ^2 K. n# F' t1 f4 ]1 Y! K
第9章 最短路径
6 R; ]1 w) H( F" |$ s/ k1 d! J+ L另外一个非常有名的图问题。各式最短路径算法思路究竟有什么不同?使用情况又有什么区别?且听我一一道来。
, ^( ~+ W4 C# e. r8 K6 C9-1 最短路径问题和松弛操作(Relaxation)5 L9 j5 ]8 {; p' `/ Z, k L h4 Q0 I
9-2 Dijkstra算法的思想+ R( g2 \3 m6 w- T: u
9-3 实现Dijkstra算法
% H: T- D; H6 H. g2 n$ }0 @9-4 负权边和Bellman-Ford算法9 Z# r: g, ?: Y* C: O
9-5 实现Bellman-Ford算法9 g% C1 x/ p9 ?$ b, E+ V
9-6 更多和最短路径相关的思考
( x5 n( e: Q- \4 |
( {& z4 o( P E8 M/ j第10章 结束语
. v7 z+ p9 i% o2 l4 a恭喜大家,学完了整个课程。接下来算法还有什么内容可以学习,且听我一一道来。学无止境,大家加油!:)
: }9 X' v/ D. h& ^10-1 总结,算法思想,大家加油 o: |; ?8 v7 g' |3 L, k, X6 a
0 }3 b3 ^) I _0 ~. V. P& s g& O8 a
【下载地址】
4 \6 b; B" @' p- s& f5 R! ~9 i( B0 x' {# [3 h7 H# v: I! n/ \) F* }
6 m! [1 L. L/ V N* \3 H1 k
* j0 U) D9 W( C0 ]" C. O$ U/ z( e
; M, e5 i0 d( l3 z' L2 M+ E$ V |