学习算法思想 修炼编程内功[C++版]

  [复制链接]
查看2214 | 回复10 | 2019-8-25 22:38:55 | 显示全部楼层 |阅读模式
$ W  H+ A8 x8 O0 H+ z" R7 o5 R" G
360截图18930617376454.png
* P* ]1 F8 }/ f
【课程简介】" L+ @) a  B) }. W) Z' z8 b2 d
任何时候学习算法都不晚,而且越早越好,这么多年,你听说过技术过时,什么时候听说过算法过时,不仅没有过时,因为机器学习、大数据的要求,算法变得越来越重要了7 r1 v" x) Y+ L3 O

4 ^( m! u6 o& i) ]' S/ b1 j【课程目录】9 y  C8 a1 p- z5 Y* L" _
第1章 当我们谈论算法的时候,我们在谈论什么?* v6 V, r( Z+ m) O7 T
无论是BAT,还是FLAG,但凡有点儿水平的技术公司,面试都要面算法。为什么算法这么重要?在工作中,真的会使用算法吗?学了算法到底有什么用?当我们谈论算法的时候,我们在谈论什么?" F1 ]+ M: Y+ R, w7 |
1-1 我们究竟为什么要学习算法 试看; T1 a+ I! f' F
1-2 课程介绍
6 ^% o" }. }8 [) f0 n) P  e3 ~+ g* x4 q) N! Y
第2章 排序基础
& `0 ~- U- G% ?) ]: ^7 @7 mO(n^2)的算法虽然简单,但也实用!让我们从最简单的基础排序算法开始,打开我们的算法大门!0 y  }+ v6 ?+ h- n2 Y1 l% `6 T
2-1 选择排序法 - Selection Sort 试看
" L' b# {% c% W0 V9 j2-2 使用模板(泛型)编写算法 试看
* o1 M2 v4 \% B- z2-3 随机生成算法测试用例
9 j; S# R) X1 V# z; a, Q5 E1 k2-4 测试算法的性能
! m. ^, J3 ^6 C6 H: l2-5 插入排序法 - Insertion Sort$ Z# c9 c6 W6 \4 Q0 [1 Y2 _5 Q
2-6 插入排序法的改进2 K+ Y1 q; W2 l* }4 `6 e
2-7 更多关于O(n^2)排序算法的思考
+ A; r7 q( M% G
) f+ d3 b) B, j, V3 O第3章 高级排序算法
% f: y; `8 I6 C/ l  p6 Z虽然很多同学都听说过归并排序和快速排序,但优化归并排序可以有哪些角度?快速排序能逐渐迭代四个版本?在这一章,让我们真正理解这些高级排序算法。面试遇到这些问题,再也不愁!
& P3 l; S5 y. h. i3-1 归并排序法 - Merge Sort. \* f; s' j0 b$ Y/ `( ?# ~
3-2 归并排序法的实现  s# Y' E( q7 `# V4 F, E
3-3 归并排序法的优化
0 P+ a% l% B* z2 Z3-4 自底向上的归并排序算法
7 `- s' ^5 t: R; N% ^3-5 快速排序法 - Quick Sort3 Z% q7 d6 C- e. F% g/ j
3-6 随机化快速排序法' K: c; e7 U' z  F* ]4 T
3-7 双路快速排序法
0 r4 l+ ~3 v0 ^8 D3-8 三路快速排序法( ]- B! ^0 Q! [( a1 S8 P+ D; u
3-9 归并排序和快速排序的衍生问题
9 p, \+ l. g2 k6 }/ H! l% a. |$ i$ s$ ^  w9 u. t
第4章 堆和堆排序; s. h0 d3 }4 [9 K7 X% C
深入探索我们要学习的第一个数据结构,相信听了这一章的介绍,大家都能白板编程出一个堆结构!另外,听说过索引堆吗?它可是后续优化图算法的重要工具哦。5 c3 [4 B* U8 j. ^) X$ q
4-1 为什么使用堆?
9 v( H0 ?( E$ Z4 X- E4-2 堆的基本存储
! Q; m1 Q+ Y: C4-3 Shift Up
: L+ O- o9 O2 A! J4-4 Shift Down
) o1 r( q) f1 m, Q; Y" G. E+ y4-5 基础堆排序和Heapify( C& X5 M! e: ?8 H3 ~
4-6 优化的堆排序(Heap Sort)- m2 W$ W! ^3 U
4-7 排序算法总结  t& h' h. [5 ~: J- E( M
4-8 索引堆(Index Heap)" g- d( h0 @, x! }  m$ M* P
4-9 索引堆的优化. l8 q# ?8 r% ]: K$ R
4-10 和堆相关的其他问题7 T# g- }3 P4 K% |% j: {7 a: e7 I/ i
! l  ], z" Q7 x& ]
第5章 二分搜索树
- k- S, U2 D/ ~3 |: X3 I从二分查找法到二分搜索树,充分利用递归结构,编写一个功能齐全的树结构。不要小瞧树结构,无论是更高级的数据结构,还是更复杂的算法,甚至在人工智能领域,这一章都是基础哦。
3 X4 k' c) u" O$ v2 ?; s( z1 D  n5-1 二分查找法(Binary Search), s6 c+ E1 _( P1 G+ a) S% W3 ^
5-2 二分搜索树基础 (Binary Search Tree)
  y. z5 T% ?* Z* j  X5-3 二分搜索树的节点插入4 e$ N. C3 Z5 _% h$ i
5-4 二分搜索树的查找. T" R. `1 @8 B: m  A
5-5 二分搜索树的遍历(深度优先遍历)
2 P( f5 p$ W% n5-6 层序遍历(广度优先遍历)4 Q. ~% V. x- k3 T" Z0 {
5-7 删除最大值,最小值0 s& L" y' D+ {, y$ a$ l: t
5-8 二分搜索树节点的删除(Hubbard Deletion)
' T" a" ~1 X. u( C0 p; Q; M5-9 二分搜索树的顺序性
8 n6 d9 a7 W/ N1 s5-10 二分搜索树的局限性5 N( i9 W+ g: I; x8 }$ H) W
5-11 树形问题和更多树2 C& ~/ y& d( a8 S
4 Z( q$ l# P  V3 ]2 C
第6章 并查集
: @3 Y0 b  @( ~1 {一起实现一种树形结构中的异类——并查集,并逐步优化。这个数据结构,在后续的图算法中,也将发挥重大的作用哦。
" R2 ~, U; c7 X% i# ]6 i6-1 并查集基础(Union Find)
& L" @/ w0 S& j) G5 _6-2 Quick Find3 U( {* N7 Q7 `# @- |' g0 u
6-3 Quick Union4 s, ?& ]. y7 N$ `$ e, d2 a1 J. z
6-4 基于size的优化- `( n' p; ]' J7 k
6-5 基于rank的优化) i8 U% r1 U" M" O2 C% L  s
6-6 路径压缩 (Path Compression)
* u$ k9 U- z$ F' s9 `) g4 W/ E( ]+ c1 A
第7章 图的基础" P/ v/ V: o9 H5 z  {$ O; z/ s
图论的基础知识,就能帮助我们实现很酷的结构了!Photoshop中的魔棒功能是什么原理?怎么生成一个迷宫?自己写一个扫雷游戏的内核?通过这最小章的学习,相信你对这些问题的答案都能有一定的了解!8 g- y% ]% ^6 z8 B
7-1 图论基础8 L$ E. S& A4 r6 P& I
7-2 图的表示
% t( _% d7 e! v5 j; u$ k7-3 相邻结点迭代器5 @6 K! \2 v6 N. N+ c" P
7-4 图的算法框架
, W, {, z" e& w1 s7 b- N( `7-5 深度优先遍历和联通分量5 e$ u" _8 y- V
7-6 寻路
: L* j% |1 l6 z3 h+ x3 d7-7 广度优先遍历和最短路径
6 N' j9 v, }3 j/ F5 F3 h7-8 迷宫生成,PS抠图——更多无权图的应用
/ f7 h' i5 H; o
9 S% R, m& `* g' ~; W  i第8章 最小生成树, C  N' r* w. k( d* K
接触第一个正儿八经的有权图问题,让我们看历史上的计算机学家都是怎么解决这个问题的,我们又如何利用之前学习的高级数据结构进行优化。9 U& w6 j; _5 [* l0 g
8-1 有权图
4 V6 o& f8 X8 r1 `8-2 最小生成树问题和切分定理6 E+ [9 d( e: B) `' j* X' H
8-3 Prim算法的第一个实现 (Lazy Prim)' a9 E1 J% S8 |+ w3 M
8-4 Prim算法的优化/ Q5 o# k6 o( `3 P5 I* ^
8-5 优化后的Prim算法的实现( D4 j5 b4 p: W$ N$ l
8-6 Krusk算法
2 M/ q* r% E$ v7 |" _0 C) k8-7 最小生成树算法的思考
8 B/ ]; V! A6 I# G4 q% b9 c6 ^$ F3 e; u% \& }0 p
第9章 最短路径% i( w, K4 f1 k; a
另外一个非常有名的图问题。各式最短路径算法思路究竟有什么不同?使用情况又有什么区别?且听我一一道来。+ _6 V  F  K9 E7 t' k, [5 j/ I# l
9-1 最短路径问题和松弛操作(Relaxation)) X; c, o: O! u
9-2 Dijkstra算法的思想
! k: z/ X8 o6 K9-3 实现Dijkstra算法! |% I0 |" e, W. S$ p
9-4 负权边和Bellman-Ford算法% z$ ~6 k1 v; S1 U4 P
9-5 实现Bellman-Ford算法2 X7 }5 T' @0 D2 A4 `; D) O
9-6 更多和最短路径相关的思考% B5 j" [1 D) f2 j2 p; z
. Y% L5 q( Z0 M2 R9 R' v' Z7 i
第10章 结束语
! b, M/ {3 \+ r7 h9 D  C& z恭喜大家,学完了整个课程。接下来算法还有什么内容可以学习,且听我一一道来。学无止境,大家加油!:)
! C5 N& U2 D( Q" j: c) N) {6 [  X1 z10-1 总结,算法思想,大家加油
5 v6 O, b0 t8 }# m9 Q9 |& a: t1 ?/ D, S
【下载地址】2 g7 ~' ^/ {5 ^7 O$ M1 O% U9 k  E
游客,如果您要查看本帖隐藏内容请回复

9 m4 z; f0 ~( c$ K0 s3 _0 R" w
, H' P& n+ n: v* }# A& L' @5 y. K
% n) @5 ~4 J7 ]' p% O5 O5 C& [/ B' j# L( l
回复

使用道具 举报

A阿银A | 2019-9-1 16:57:41 | 显示全部楼层
强烈支持楼主
回复

使用道具 举报

brokenyouth92 | 2019-9-17 14:09:32 | 显示全部楼层
强烈支持楼主ing……
回复

使用道具 举报

hycniupi | 2019-9-17 14:40:29 | 显示全部楼层
学习学习
回复

使用道具 举报

love505836308 | 2019-9-17 18:20:46 来自手机 | 显示全部楼层
谢谢
回复

使用道具 举报

love505836308 | 2019-9-17 18:21:11 来自手机 | 显示全部楼层
谢谢楼主
回复

使用道具 举报

Feanmy | 2020-4-16 17:51:05 | 显示全部楼层
不错,支持。。。
回复

使用道具 举报

modalogy | 2021-9-1 09:05:43 | 显示全部楼层
666666666666666666666666
回复

使用道具 举报

380904787 | 2021-9-5 00:43:34 | 显示全部楼层
感谢楼主分享
回复

使用道具 举报

qwety20185 | 2021-9-5 07:23:05 | 显示全部楼层
感谢楼主分享
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则